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Abstract. Accurate localization and segmentation of intervertebral
discs (IVDs) from volumetric data is a pre-requisite for clinical diagnosis
and treatment planning. With the advance of deep learning, 2D fully con-
volutional networks (FCN) have achieved state-of-the-art performance on
2D image segmentation related tasks. However, how to segment objects
such as IVDs from volumetric data hasn’t been well addressed so far.
In order to resolve above problem, we extend the 2D FCN into a 3D
variant with end-to-end learning and inference, where voxel-wise predic-
tions are generated. In order to compare the performance of 2D and 3D
deep learning methods on volumetric segmentation, two different frame-
works are studied: one is a 2D FCN with deep feature representations
by making use of adjacent slices, the other one is a 3D FCN with flexi-
ble 3D convolutional kernels. We evaluated our methods on the 3D MRI
data of MICCAI 2015 Challenge on Automatic Intervertebral Disc Local-
ization and Segmentation. Extensive experimental results corroborated
that 3D FCN can achieve a higher localization and segmentation accu-
racy than 2D FCN, which demonstrates the significance of volumetric
information when confronting 3D localization and segmentation tasks.

1 Introduction

Accurate localization of intervertebral discs (IVDs) is a pre-requisite for quanti-
tative diagnosis and treatment planning of various spinal pathologies [1]. The aim
of the localization task is to identify the center of each IVD, while delineating the
regions of IVD for the segmentation task. In clinical practice, the IVDs are man-
ually segmented by radiologists thus suffers from the drawbacks of considerable
efforts, time-consuming and error-prone [2]. Therefore, automatic approaches
are highly demanded to alleviate the workload and improve the efficiency as well
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as reliability. Nevertheless, the automatic localization and segmentation of IVDs
from volumetric images is quite challenging for several reasons. First, IVDs often
carry similar morphological appearance due to the repetitive nature of spine,
which makes the labeling of individual IVD difficult. Second, the existence of
similar anatomical structures or image artifacts would impede the localization
and segmentation process. Third, the large shape variations of IVDs among dif-
ferent subjects make the robust localization and segmentation more challenging.

Many researchers have devoted their efforts on this challenging problem. Previ-
ous methods commonly utilized hand-crafted features (such as Haar features [14]
and HOG [13]) for localizing the IVDs or vertebrae by different classifiers includ-
ing random forests [6] and Adaboost classifier with geometric constraints [14].
Although considerable progress has been achieved, the employed low-level fea-
tures are over-specified with a limited representation capability. A joint 2D
learning model leveraging feature representations learned from deep convolutional
networks was proposed in [3] to localize and identify the centroid of vertebrae
from Computed Tomography (CT) data. Recently, 2D fully convolutional net-
works (FCN) have achieved the state-of-the-art performance on image segmen-
tation tasks [9]. However, 2D FCN may be not optimal for 3D object localization
and segmentation tasks from volumetric data, which are common in the field of
medical image computing, since limited spatial information is considered.

Inspired by the success of 2D FCN on natural image segmentation tasks and
aim to tackle the challenges of 3D object localization and segmentation prob-
lems, we propose a novel 3D FCN model for localization and segmentation tasks
from high-dimensional volumetric data. We comprehensively studied and com-
pared the 2D and 3D deep learning with end-to-end learning and inference on
a challenging medical application. Extensive experiments on the task of IVD
localization and segmentation demonstrated that exploring flexible 3D infor-
mation can achieve more promising performance. In addition, the 3D FCN is
overall general and can be readily adapted to other volumetric localization and
segmentation tasks.
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Fig. 1. The illustration of 3D fully convolutional networks.
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2 Method

In this section, we present the design and implementation of the proposed end-
to-end 3D FCN and explain its advantages over 2D versions. Figure 1 illustrates
the overview of the 3D FCN.

2.1 Architecture Design

With the development of imaging technology, volumetric data have been more
and more popular in clinical practice, such as the 3D MR images employed in
diagnosis and treatment of spinal pathologies. Therefore, researchers attempted
to deal with the 3D data by using several adaptations of 2D convolutional neural
networks (CNNs) [4,10,11]. However, 2D CNN cannot sufficiently leverage the
volumetric information, which is crucial for 3D detection and segmentation tasks.
To the best of our knowledge, 3D CNN models have been rarely presented in
medical image processing community so far [5,7,12]. Although these models were
not trained in an end-to-end way on segmentation tasks, preliminary studies have
demonstrated the effectiveness of 3D CNN on volumetric tasks. In this paper,
we, for the first time, present an effective and efficient end-to-end trained 3D
FCN framework for volumetric data processing. As shown in Fig. 1, our model
includes three kinds of layers.

3D Convolutional Layer. In the 3D convolutional layer, a 3D feature volume
is produced by convolving the input with 3D kernels, adding a bias term and
finally applying a non-linear activation function. Thus, the output is 3D feature
volumes (Nf denotes the number of feature volumes) instead of 2D feature maps
for 2D CNNs. The 3D feature volumes can be presented as:

hl
i = σ

(
bli +

∑
k

hl−1
k ∗ W l

ki

)
(1)

where hl
i represents the ith 3D feature volume in the lth layer, W l

ki denotes the
3D convolution kernel connecting the successive feature volumes and bli is the
bias term. The σ(·) is a non-linear rectifier function [8]. The above operation can
be expanded in all three dimensions as:
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where W l
ki[m, q, r] and hl−1

k [x−m, y − q, z − r] represent the element-wise values
within the 3D convolution kernel and 3D feature volume, respectively. Thus, the
3D kernel is shared within the same feature volume, and the spatial information
can be effectively exploited.

3D Max-Pooling Layer. In-between 3D convolutional layers, 3D max-pooling
layers are periodically inserted for endowing local invariance. Specifically, max-
pooling partitions the input volume into a set of non-overlapping cubes, for each
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such sub-volume, outputs the maximum value. In this way, the max-pooling
operation is performed in a 3D fashion, where activations within a cubic neigh-
borhood are abstracted and promoted to higher layers.

3D Up-Sampling Layer. Due to the utilization of successive down-sampling
layers, the output dimensions are typically reduced compared to the original
input size. In this regard, we propose a 3D up-sampling layer to bridge the coarse
feature volumes into dense predictions. In the up-sampling layer, the dimensions
of down-sampled feature volumes are gradually up-sampled to the original input
size. Specifically, up-sampling with a factor of d (d was typically set as 2 in our
experiments) is achieved by increasing d times convolutions on the coarse feature
volumes. While reshaping the neurons into higher resolution feature volumes, a
neighboring-like interpolation of cubic neurons was preserved. Note that the up-
sampling kernels are not fixed (thus it doesn’t have to be bilinear interpolation),
but are learned in an end-to-end way. In this way, the network can take a whole
volume as input and output the result within a single forward propagation.

2.2 End-to-End Learning and Voxel-Wise Inference

Previous 3D CNN based models were trained on sub-volume samples and
employed in a sliding window way to generate the segmentation result [12].
Specifically, fixed-sized 3D training sub-volumes were extracted from the volu-
metric data and utilized to train a classification model. However, these methods
suffer from the inefficient testing inference due to the redundant overlapping
computations. Compared with previous studies, our method integrated with up-
sampling layers can perform end-to-end learning and voxel-wise inference, which
significantly improve the efficiency. The network takes the whole volume as input
and generates the 3D segmentation mask (the same size of original input) within
single forward propagation. Finally, the training of whole network is formulated
as a per-voxel classification problem with respect to the ground-truth segmen-
tation mask. By denoting the parameters in the network by θ = {W, b}, the
optimization objective is to minimize the following negative log likelihood func-
tion via standard back-propagation:

L(X ; θ) =
λ

2
||W ||22 −

∑
x∈X

C∑
c=1

yx
c log pc(x;W, b) (3)

where the first part is the regularization term and latter one is the fidelity term.
The tradeoff of these two terms is controlled by the hyperparameter λ. pc(x;W, b)
denotes the predicted probability of cth class (total C classes) after softmax clas-
sification layer for voxel x in volume space X , and yx

c ∈ {0, 1} is the correspond-
ing label. The parameters θ = {W, b} of our 3D FCN are jointly optimized in an
end-to-end way by minimizing the loss function L. In our 3D FCN, each voxel
in the 3D image is taken as a training sample to the network. Therefore, the
equivalent training database is dramatically enlarged and the risk of over-fitting
with the limited medical dataset is effectively alleviated. In addition, with no
need to crop overlapped sub-volumes, the learning process is quite efficient.
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Finally, we utilized simple post-processing steps to generate local smooth seg-
mentation results. First, we binarized the probability maps by a given threshold
after filtering with a small disk. Then the segmentation mask can be obtained by
finding the connected component after removing small areas. Furthermore, the
center of IVD can be determined as the centroid of the connected component.
To this end, the centers and segmentation masks of IVDs (type from S1 to T11)
can be localized and segmented sequentially.

3 Experimental Results

3.1 Dataset and Pre-processing

We evaluated our method on the MICCAI 2015 challenge dataset on Automatic
Intervertebral Disc Localization and Segmentation from MR Images. The dataset
consisted of 25 3D T2-weighted turbo spin echo MR images, which were acquired
with the 1.5 Tesla MRI scanner of Siemens Magnetom Sonata. The images were
resampled into the resolution of 2 × 1.25 × 1.25 mm3. A total of 15 3D images
with ground-truth annotations were released for training, while testing data was
divided into two sections (5 images in test1 for offline evaluation and 5 images
in test2 for on-site competition) with ground-truths held out by the challenge
organizers for independent evaluation. We pre-processed the data by subtracting
the mean value before inputting into the network.

3.2 Implementation Details

The kernels of network were randomly initialized from the Gaussian distribution
(μ = 0, σ = 0.01). The proposed 3D FCN was implemented with Python based
on the Theano library and it took about 0.3 s to process one test image with size
40 × 304 × 304, which was much faster than 2D FCN and methods utilizing the
sliding window way [12], which caused a large amount of redundant computations
on neighboring voxels.

For comparison, we also implemented a 2D FCN for the processing of volu-
metric data, where the input is the adjacent slices (3 slices in our implementation
and the output is the binary mask of the middle slice.) The 2D FCN was imple-
mented with Matlab and C++ based on the study of [9]. Generally, it took less
than 1 min to process one test image with the same size using a standard PC
with a 2.50 GHz Intel(R) Xeon(R) E5-1620 CPU and a NVIDIA GeForce GTX
X GPU.

3.3 Qualitative Evaluation

Two examples of qualitative localization and segmentation results from different
methods can be seen in Fig. 2. We can see that methods including both 2D FCN
and 3D FCN can generate visually smooth and accurate segmentation results. As
the green crosses shown in the figure, they can successfully localize the centers
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Fig. 2. Examples of localization (the centers of IVDs are marked by green crosses)
and segmentation results (the boundaries of segmentation masks are delineated by red
lines) of different methods: original images, 2D FCN and 3D FCN (from left to right).
(Color figure online)

of IVDs. When comparing the results of 2D FCN and the proposed 3D FCN,
it is observed that the 3D FCN can achieve more accurate and smooth results,
which is attributed to the advantage of proposed 3D FCN by exploiting large
volumetric contextual information.

3.4 Quantitative Evaluation and Comparison

Evaluation Metrics. The evaluation metrics on IVD localization include mean
localization distance (MLD) with standard deviation (SD) and successful detec-
tion rate P . If the absolute difference between the localized IVD center and the
ground truth center is no greater than 2 mm, the localization of this IVD is
considered as a correct detection; otherwise, it is considered as a false detection.
The evaluation metrics on IVD segmentation include mean dice overlap coeffi-
cients (MD) with SD and mean average absolute distance (MAAD) with SD.
Larger MD means better segmentation accuracy. MAAD is a metric measuring
the average absolute distance between the ground truth disc surface and the
segmented surface, hence smaller MAAD means better segmentation accuracy.

Table 1. Results of IVD localization and segmentation on test1 dataset

Method MLD ± SD (mm) P (2.0 mm) MD ± SD MAAD± SD (mm)

2D FCN 1.07 ± 0.62 91.4 % 83.2 % ± 4.6 % 1.58 ± 0.28

3D FCN 0.91 ± 0.58 94.3% 88.4% ± 5.3% 1.27 ± 0.26
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Table 2. Results of IVD localization and segmentation on test2 dataset

Method MLD ± SD (mm) P (2.0 mm) MD ± SD MAAD± SD (mm)

2D FCN 0.89 ± 0.48 94.3% 82.2 % ± 6.8 % 1.77 ± 0.29

3D FCN 0.85 ± 0.52 94.3% 89.0% ± 3.4% 1.22 ± 0.15

Results of IVD Localization. The quantitative localization results of different
methods on test1 and test2 datasets can be seen in Tables 1 and 2, respectively. It
is observed that both 3D FCN and 2D FCN can localize the centers of IVD with
more than 90% detection rate, while 3D FCN achieved a higher detection rate
(94.3%) than that of 2D FCN (91.4%) within range of 2 mm on test1 dataset.
In addition, the 3D FCN achieved a smaller MLD with a smaller SD than 2D
FCN. The comparison between 2D FCN and 3D FCN demonstrates the efficacy
of taking full advantage of 3D volumetric information consistently. The results
of our method achieved the best localization results on the onsite competition,
outperforming all the other methods.

Results of IVD Segmentation. From the segmentation results of different
methods on test1 and test2 datasets, we can see that the 3D FCN achieved
much better performance than 2D FCN on different segmentation measurements,
highlighting the utility of volumetric information on 3D object segmentation
problems. Although without any sophisticated post-processing steps or incorpo-
rating explicit shape regression methods (e.g., active shape model), our methods
with 3D FCN achieved competitive performance during the challenge on the
segmentation task of IVD. To sum up, in comparison of 2D and 3D FCN, we
corroborated the significance of volumetric feature representation in 3D object
localization and segmentation tasks.

4 Conclusions

In this paper, we propose a novel 3D FCN model with end-to-end learning and
inference (i.e., voxel-wise predictions) for intervertebral disc localization and
segmentation. We compare the performance of 2D and 3D FCN to validate the
efficacy of exploiting volumetric contextual information. Extensive experiments
on the 3D T2 MRI data of MICCAI 2015 challenge dataset corroborated that our
method achieved the best results on the localization task and competitive perfor-
mance on the segmentation task. In addition, our approach is general and can be
easily extended to other 3D localization and segmentation applications. Future
work will include incorporating shape regression methods to further improve the
performance and testing our method on a larger dataset with pathological cases
included.
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